Each lightning stroke location requires the time of group arrival (TOGA) from a least 5 WWLLN sensors. These sensors may be several thousand km distant from the stroke. The geographical arrangement of the sensors is important: a lightning stroke which is enclosed by sensors is much more accurately located than one which is not so enclosed. Clearly a uniform spacing of sensors around the Earth is the ideal. Since the Earth is round, there are no edges: every lightning stroke is surrounded by sensors, but not necessarily by the sensors which sense it. Typically only about 15 to 30% of strokes detected by one sensor are detected by 5 or more. These strokes are usually the stronger ones. Recent research indicates our detection efficiency for strokes about 30 kA is approximately 30% globally.

To cover the whole world by sensors spaced uniformly about 1000 km apart would require roughly 500 sensors. If spaced 3000 km apart, we would need “only” around 50 to 60 sensors. Presently we have 40 WWLLN sensors, and we are in the process of expanding to 60 sensors within the next year or two.

More information on the World Wide Lightning Location network (WWLLN) is available from our publication list.