A new ground-based, hourly global lightning climatology

Katrina S. Virts¹, John M. Wallace¹, Michael L. Hutchins², and Robert H. Holzworth²

¹Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
²Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA

Submitted on 15 June 2012, re-submitted on ______

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640
Email: kvirts@uw.edu
Abstract

The seasonally and diurnally-varying frequency of lightning flashes provides a measure of the frequency of occurrence of intense convection and, as such, is useful in describing the Earth’s climate. Here we present a few highlights of a global lightning climatology based on data from the ground-based World Wide Lightning Location Network (WWLLN), for which global observations began in 2004. Because WWLLN monitors global lightning continuously, it samples ~100 times as many lightning strokes per year as the Tropical Rainfall Measuring Mission’s (TRMM) Lightning Imaging Sensor (LIS). Using WWLLN data it is possible to generate a global lightning climatology that captures seasonal variations, including those associated with the mid-latitude storm tracks, and resolves the diurnal cycle, thereby illuminating the interplay between sea breezes, mountain-valley wind systems, and remotely forced gravity waves in touching off thunderstorms in a wide variety of geographical settings. The text of the paper shows a few samples of WWLLN-based regional seasonal (the mid-latitude storm tracks and the Mediterranean) and diurnal climatologies (the Maritime Continent, the central Andes, and equatorial Africa), and the on-line supplement presents animations of the global seasonal cycle and of the diurnal cycle for the latter regions.
Capsule

The ground-based World Wide Lightning Location Network (WWLLN) provides unprecedented sampling of lightning frequency, providing a basis for climatologies that resolve diurnal as well as seasonal variations.
1. Introduction

Much of the rain that falls in the tropics is associated with deep cumulus convection (Lopez 1978; Rickenbach and Rutledge 1998; Johnson et al 1999). The clouds exhibit a characteristic life cycle with newly-formed, buoyant convective cells consisting of air that has been lifted to its level of free convection in the lower troposphere and begins to ascend freely (Ogura and Takahashi 1971; Houze 1993, chapter 7), drawing on the convective available potential energy (CAPE) inherent in the conditionally unstable mid-troposphere (Williams and Renno 1993). Within an hour or so, the growing cells encounter the stably stratified tropical tropopause transition layer ~12 km (Highwood and Hoskins 1998; Gettelman and Forster 2002), whereupon they spread out to form much longer lived “anvils” in which the air continues to rise, but much more slowly (Yuan et al. 2011). Over the tropics as a whole, roughly half the rain falls as heavy, but short-lived showers from the updrafts in convective cells, and the other half falls more gently in mesoscale rain areas formed by spreading anvil clouds (Schumacher and Houze 2003). Convective cells originating over the oceans tend to be of moderate intensity with updraft speeds on the order of 1-2 m s\(^{-1}\), whereas those originating over land when the buoyancy of boundary layer air is enhanced by daytime heating may have updraft velocities up to 5 m s\(^{-1}\) or more (Stith et al. 2002), which is strong enough to induce the rates of charge separation required to produce lightning (Deierling and Petersen 2008). Hence, the frequency of occurrence of lightning serves as a proxy for the frequency of occurrence of vigorous updrafts and associated phenomena such as flash floods (Tapia et al. 1998).

Conditionally unstable lapse rates in the mid-troposphere are a necessary condition for vigorous convection, but in order to realize the CAPE inherent in the temperature stratification it is necessary to have sufficient low level convergence to lift stably stratified boundary layer air up
to its level of free convection (Williams and Renno 1993). In the tropics, where synoptic scale
disturbances are generally weak, land-sea breezes and mountain-valley wind regimes forced by
the diurnal cycle in low level heating are the dominant mechanism for producing the required
lifting (Kikuchi and Wang 2008). Daytime heating of the boundary layer air over land can
greatly increase the CAPE that can be realized if there is sufficient lifting to trigger convection.
It follows that lightning frequency should be strongly modulated by the diurnal cycle and,
indeed, it has been shown to be so in numerous regional studies in different parts of the world
(among others, Petersen et al. 1996; Pinto et al. 1999; Collier et al. 2006).

In contrast with the predominantly locally-driven thunderstorms in the tropics,

thunderstorms (Pessi and Businger 2009) and heavy precipitation (Jansa et al. 2001) in the
extratropics are known to occur in association with synoptic scale cyclones. During winter,
cyclones tend to form in the lee of mountain ranges, such as the Andes (Hoskins and Hodges
2005) and Rockies (Zishka and Smith 1980; Schultz and Doswell 2000), and over the western
oceanic boundary currents and propagate eastward across the oceans, forming so-called “storm
tracks” of enhanced cyclone activity (Hoskins and Valdes 1990; Hoskins and Hodges 2005).
Wintertime cyclones are also observed over the Mediterranean Sea (Karas and Zangvil 1999).

Until recently, lightning climatologies have been based on station data or local lightning
networks, most of which are regional or national in scope. Global satellite-based lightning
monitoring began in the 1970s (Turman 1978, and references therein; Orville and Spencer 1979),
and statistically significant lightning climatologies became available with the development of the
Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS; Christian et al. 2000).
Datasets derived from these measurements have been used to construct annual-mean and
seasonal lightning climatologies (Christian et al. 1999, 2003) and to investigate tropical-mean
diurnal lightning variability (Liu and Zipser 2008).

The World Wide Lightning Location Network (WWLLN, see http://wwlln.net) is a
ground-based network with global observations beginning in 2004. The WWLLN record is now
long enough to support studies of seasonal, diurnal, and synoptic lightning variability over most
of the globe. Descriptions of the WWLLN and LIS datasets are in Section 2, and a comparison
of the climatological distribution of lightning detected by each sensor is in Section 3. Seasonal
and diurnal variations in lightning frequency observed by WWLLN are discussed in Section 4,
followed by conclusions in Section 5.

2. Data

The WWLLN network consists of 68 sensors, as of October 2012 (sensor locations are
shown in Fig. 1), that monitor very low frequency (VLF) radio waves for lightning sferics. The
network uses a time of group arrival technique (Dowden et al. 2002) on the detected sferic
waveforms to locate lightning to within ~5 km and < 10 µs (Abarca et al. 2010). Comparisons
between lightning observations from WWLLN and regional networks indicate that the global
detection efficiency of WWLLN can be estimated as ~10% (Rodger et al. 2006, 2009; Abarca et
al. 2010; Connaughton et al. 2010; Hutchins et al. 2012b) of all strokes, which is sufficient to
enable WWLLN to detect almost all lightning-producing storms (Jacobson et al. 2006).

Abarca et al. (2010) compared WWLLN hourly lightning frequency over the United
States with observations from the National Lightning Detection Network (NLDN) and found
some marked differences. The agreement was somewhat better when comparing subsets of each
climatology corresponding to strokes with strong peak currents, but the differences were still
large enough that they expressed reservations concerning the ability of WWLLN to capture the
diurnal cycle. We will show in Section 4 that the WWLLN hourly climatology is generally
consistent with prior ground-based studies and with our understanding of the processes that
cause lightning to vary systematically with time of day.

OTD was launched with the MicroLab-1 satellite in April 1995 into a 70° inclination
orbit (Christian et al. 2003), and LIS is carried on the Tropical Rainfall Measuring Mission
(TRMM) satellite, which was launched in 1997 into a 35° inclination orbit (Christian et al.
1999). In this study, we make use of lightning climatologies based on ~13 years of LIS and ~5
years of OTD observations. Annual-mean and hourly-mean climatologies are available at 0.5°
and 2.5° spatial resolution, respectively. TRMM also carries a Precipitation Radar (PR) and
Visible and Infrared Scanner (VIRS). TRMM rainfall observations are supplemented with data
from other satellite-borne microwave imagers and infrared sensors to generate the gridded
TRMM 3B42 dataset (Huffman et al. 2007), which is available at 3-hourly temporal resolution
and 0.25° spatial resolution.

Given the complexity of lightning, understanding the differences between lightning
climatologies based on observations from different instruments or networks is a work in
progress. LIS/OTD and WWLLN rely on fundamentally different detection methods. WWLLN
receivers detect sferics which have propagated in the Earth-ionosphere waveguide and are fully
captured within a 1 millisecond window at each station (Dowden et al. 2002). Because WWLLN
has a relatively high detection threshold for power, it preferentially detects strong cloud to
ground strokes and rarely detects and locates multiple strokes within a single flash (Rodger et al.
2004, 2005; Jacobson et al. 2006). Thus, strictly speaking, WWLLN detects lightning strokes,
not lightning flashes. In contrast, LIS and OTD are optical staring imagers that detect
momentary changes in cloud brightness caused by lightning. Optical transients that are similarly
located in space and time are grouped into events referred to as flashes (Christian et al. 2000).
Thus, we will compare climatologies of WWLLN strokes with climatologies of LIS/OTD
flashes, while acknowledging the differences in the type of lightning detected by each
instrument. Further specifics on WWLLN may be found in Section 1 of the supplementary
material and in the peer-reviewed articles listed at http://wwlln.net/publications.

3. TRMM LIS versus WWLLN annual-mean lightning climatologies

The frequency of occurrence of lightning, as detected by WWLLN during the years 2008-
2011, is compared with LIS/OTD observations in Figs. 2a, b. The two climatologies are
qualitatively similar, both showing a concentration of lightning over major tropical continents—
Africa, southeastern Asia and Australasia, and Central and South America—with strong
gradients near the coastlines and features that bear a strong relationship to the underlying
topography (Fig. S2). For example, lightning is frequently observed in the central United States
between the Rocky and Appalachian Mountains. Both lightning climatologies differ
substantially from the TRMM rainfall climatology shown in Fig. 3a, in which the maxima are
over the oceanic “warm pool” covering the equatorial Indian and western Pacific Oceans and in
the region of the intertropical convergence zone (ITCZ). Lightning also tends to be more
geographically focused than rainfall: in the WWLLN and LIS climatologies for the tropical belt
(30°N-30°S), half the lightning strokes are observed in 8% of the area, whereas half the rain falls
over 22% of the area (Fig. S3). These distinctions illustrate the importance of daytime heating of
the atmospheric boundary layer over land in creating the conditions required for the initiation of
intense convection.
The color bars in Figs. 2a, b have been chosen so as to emphasize the similarities between the LIS/OTD and WWLLN lightning climatologies. Differences between the two climatologies are illustrated in Fig. 2c, which shows the point-wise ratio of lightning frequency reported by LIS/OTD and WWLLN. This ratio was then multiplied by a scaling factor—the global mean WWLLN lightning frequency divided by the global mean LIS/OTD lightning frequency—so that values < 1 indicate proportionally more WWLLN lightning, and vice versa, relative to their respective global means. With a few notable exceptions (e.g., over the Maritime Continent and the southeastern United States), LIS/OTD reports proportionally more lightning over land and less over the oceans than WWLLN. Because WWLLN’s detection efficiency is higher for lightning strokes with higher peak currents (Rodger et al. 2009), the land/sea contrasts in Fig. 2c may reflect a tendency for more powerful lightning strokes over the oceans than over land (Boccippio et al. 2000; Rudlosky and Fuelberg 2010). The unevenness of the spacing of the WWLLN stations (Fig. 1) also contributes to the observed differences between the LIS/OTD and WWLLN climatologies. For example, it is evident from Fig. 2c that the LIS lightning climatology places relatively greater emphasis on the maxima in lightning frequency in areas such as Africa and the Himalayas, where WWLLN’s detection efficiency is lower (Hutchins et al. 2012b). Further analysis of lightning stroke energy, particularly over the eastern United States, is ongoing.

For broad regional comparisons between lightning frequency over different continental regions, such as central America versus India, LIS is clearly the definitive dataset for latitudes up to ~35°. The advantage of WWLLN is that it samples continuously over the whole globe, whereas LIS and OTD sample only when the satellite passes overhead, or ~0.1% of the time (Christian et al. 1999, 2003). When detection efficiency (~10% for WWLLN [Rodger et al.
2009; Abarca et al. 2010] and ~80-90% for LIS [Boccippio et al. 2002]) is taken into account, WWLLN samples ~100 times as many strokes per year as LIS. The difference in the number of samples has little effect on the appearance of the annual-mean lightning climatologies shown in Fig. 2, but it becomes a more important consideration when the data are broken down by synoptic situation and/or by time of day.

In Section 4 we describe some regional, WWLLN-based seasonal and diurnal lightning climatologies that reveal, with an unprecedented level of detail, how the occurrence of vigorous convection is maximized in the wintertime storm tracks and in the tropics where it is shaped by the underlying topography and land-sea distribution. The diurnal images shown in the text are complemented by 24-hour animations of the climatological-mean diurnal cycle in the online supplement for this article, and a more extensive selection of animations on the WWLLN web site.

4. **Seasonal and diurnal characteristics**

WWLLN lightning and TRMM precipitation over the northern Pacific and Atlantic Oceans during Northern Hemisphere winter are shown in Fig. 4a, b and in Fig. 3b, c, respectively; corresponding maps for the southern Atlantic and Indian Oceans during Southern Hemisphere winter are shown in Fig. 4c, d and Fig. 3d, e. The zonally elongated precipitation bands observed in each ocean basin including the South Pacific (not shown) between ~30° and ~50° latitude are associated with the wintertime storm tracks (Huffman et al. 1997); the North Atlantic storm track appears to veer poleward around 45° W. Vigorous convection is also found in the storm tracks, as evidenced by the corresponding lightning bands in Fig. 4. The lightning maxima lie along, or a few degrees equatorward of, the axes of maximum rainfall, and secondary
east-west oriented lightning maxima are visible in the North Pacific and Atlantic. Based on data from LIS and the Pacific Lightning Detection Network, Pessi and Businger (2009) concluded that much of the lightning in the storm tracks occurs in thunderstorms embedded in the cold fronts of mid-latitude cyclones. During winter, both lightning densities and rainfall rates are larger over the oceans than over land. Strong gradients are observed along the coasts and over warm western boundary currents. Over Argentina, wintertime cyclone development takes place in the lee of the Andes (Hoskins and Hodges 2005), and the lightning and precipitation maxima both begin over Argentina. Global, monthly-mean lightning animations based on WWLLN and LIS/OTD observations are in the supplementary material.

Cyclonic disturbances also produce thunderstorms over the Mediterranean during the local winter season (Defer 2005). Both lightning and precipitation are more frequent over the warmer sea than over the colder European landmass (Fig. 5a, b), in agreement with previous studies based on data from local lightning networks (Altaratz et al. 2003; Katsanos et al. 2007). Lightning gradients along the northern and eastern coasts of the Mediterranean and Adriatic are particularly sharp where there is steep terrain near the coast. Composite analysis (not shown) shows that southwesterly flow is observed during days of frequent lightning along the northeastern Adriatic coast. In addition, the low level instability produced by colder air moving over the warmer Mediterranean waters can create a favorable environment for thunderstorm development in the absence of cyclones (Altaratz et al. 2003). In contrast, during Northern Hemisphere summer, lightning and precipitation are most frequent over the warmer European continent (Fig. 5c, d; Chronis 2012), where thunderstorms form over the Alps, the Pyrenees, and the mountains of the Balkan Peninsula. Lightning occurrence over the latter region was also examined by Kotroni and Lagouvardos (2008) using an experimental lightning network.
The diurnal cycle of lightning over the Maritime Continent, the central Andes, and the African Great Lakes is summarized in Fig. 6-8 in terms of maps of the climatological frequency of occurrence of lightning during selected segments of the day. These summary maps and the animations in the supplementary material reveal the following characteristics of the diurnal variability.

- In response to the diurnal cycle in incoming solar radiation, convection begins around local noon over inland regions with relatively flat terrain such as the Amazon basin (Fig. 7) and parts of central Africa (Fig. 8). Over these regions, lightning occurs most frequently during afternoon and early evening, with a late afternoon peak, and least frequently during the morning, despite the fact that attenuation of the VLF waves used by WWLLN to locate lightning strokes is strongest during daytime (Hutchins et al. 2012a). Rainfall over the tropical continents exhibits a diurnal cycle with a similarly-timed peak (Kikuchi and Wang 2008). Diurnal lightning variability is smaller in Argentina (Fig. 7), where long-lived mesoscale convective systems (MCSs; Salio et al. 2007) produce nighttime lightning.

- During sunny days, warm air rises along mountain slopes as an anabatic wind, or “valley breeze.” Thunderstorms form over the steep terrain just west of the crest of the Andes during late morning and shift to the east of the crest by ~1600 LT, where they linger into early evening. The influence of valley breezes is also evident in the intense thunderstorms that begin in the early afternoon along the western slopes of the Mitumba and Virunga Mountains of central Africa and produce maximum lightning ~1900 LT (Fig. 8; Jackson et al. 2009). Similarly, afternoon and early evening lightning is frequently observed over the slopes of the mountains of the Maritime Continent (Fig. 6).
At night, cooling air drains down from the mountains into the valleys as a katabatic wind, or “mountain breeze,” inducing weak ascent over the lower terrain that is augmented where valleys of adjacent tributaries converge. Lightning occurs on the valley floor to the east of the Andes (Fig. 7), where nocturnal convection tends to be organized into mesoscale convective complexes (Bendix et al. 2009), but not to the west, where the boundary layer air is much drier. Adjacent to the Andes, lightning is observed most frequently just before midnight and persists into the morning of the next day. In some cases, nighttime lightning frequencies are similar in magnitude to the daytime maxima over the mountain slopes. Over the Maritime Continent, the mountains are free of lightning at night, while thunderstorms linger over the surrounding lowlands (Fig. 6).

Strong diurnal variations in lightning occurrence are also observed near coastlines. On sunny mornings, land surfaces, with their smaller heat capacities, warm up rapidly, resulting in strong temperature and pressure contrasts along coastlines that drive onshore winds, or “sea breezes.” Over the Maritime Continent, convection begins around noon as the sea breeze fronts develop and intensify as they propagate inland during the afternoon, with peak lightning frequencies around 1600-1700 LT (Fig. 6). Locally, lightning is enhanced where convex coastlines result in sea breeze convergence; e.g., over parts of Borneo. Most small islands experience brief afternoon lightning maxima ~3-5 hours in duration and become lightning-free by early evening, while thunderstorms over larger islands persist into the evening. Similar behavior has been noted in precipitation duration (Qian 2008). Where mountains and coastlines are in close proximity, sea breezes and valley breezes can act in concert to produce strong afternoon and evening convection (Mahrer and Pielke 1977).
At night, when the boundary layer over land cools, coastal circulation patterns reverse, resulting in “land breezes.” Thunderstorms begin ~2000 LT over Lakes Malawi and Kivu in central Africa and an hour or two later over Lakes Victoria, Tanganyika, and Albert (Fig. 8). Land breezes, enhanced by katabatic winds from the surrounding terrain (Savijärvi and Järvenoja 2000), strengthen and converge over the lakes through the night, and lightning is observed most frequently at ~0400-0500 LT. Over Lake Victoria the lightning maximum shifts from the northeastern part of the lake to the southwestern part by morning; similar behavior was observed by Hirose et al. (2008) based on TRMM precipitation data. No corresponding shift is observed over the other lakes.

Near the Maritime Continent, the nocturnal convection regime is more complex. Locally, land breezes and mountain breezes result in offshore winds, and areas with concave coastlines exhibit enhanced nighttime lightning (Fig. 6). In addition, features in the animations (found in the supplement and at http://wwlln.net/climate) that resemble gravity waves propagate out of the regions of afternoon convection and appear to trigger thunderstorms over the coastal waters, as in the numerical simulations of Mapes et al. (2003). The daytime lightning over the western slopes of the mountains of Sumatra moves offshore in late afternoon into a region of weakening convective inhibition (Wu et al. 2009), propagates southwestward, and weakens after sunrise the following day, in agreement with the description of Mori et al. (2004), based on TRMM rainfall data. Strong convection and frequent lightning occur between 2200 and 1200 LT in the Strait of Malacca, where land breezes from Sumatra and the Malay Peninsula converge (Fujita et al. 2010). Elsewhere, such as along the northern coast of New Guinea, a separate line of thunderstorms forms along the coast just before midnight and moves offshore in the
early morning hours. By morning, each of the major islands is surrounded by a ring of lightning, consistent with the TRMM rainfall climatology of Kikuchi and Wang (2008).

Diurnal lightning maps for the Maritime Continent based on the LIS/OTD climatology are shown in Fig. 6. The WWLLN and LIS/OTD climatologies are similar in some respects—for example, both indicate that lightning is more frequent over the major islands during the afternoon and evening than during the morning. However, the spatial resolution of the LIS/OTD climatology is too coarse to fully resolve features such as the morning lightning maximum in the Strait of Malacca. Hour-by-hour time series of WWLLN lightning for three areas of interest are in the supplementary material.

The discussion in this paper has focused on diurnal lightning variability in the climatological-mean or, for the Andes, the extended local summer season. Phenomena such as the monsoons (Kandalgaonkar et al. 2003), El Niño-Southern Oscillation (Hamid et al. 2001), and the Madden-Julian Oscillation (Kodama et al. 2006) also modulate lightning occurrence and, likely, its diurnal cycle.

5. Conclusions

TRMM LIS and WWLLN are the only existing lightning datasets that provide global coverage. LIS provides a well-calibrated tropical lightning climatology that already extends for over 14 years. WWLLN has been in operation for only a few years, but it offers the possibility of monitoring lightning frequency over the entire globe with sample sizes two orders of magnitude larger than is feasible with LIS, as evidenced by the comparison in Fig. 6. The two datasets are highly complementary. The Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite, scheduled for launch in 2015, will carry aboard a lightning sensor that
will provide continuous coverage over the North American sector, thereby providing a certain
degree of redundancy in the lightning measurements in that sector.

In this paper we have shown some highlights from a seasonal and diurnal cycle lightning
climatology constructed from WWLLN data binned hourly and in 0.25° × 0.25° grid boxes. The
caveats raised by the analysis of Abarca et al. (2010) notwithstanding, the WWLLN lightning
climatology appears to be consistent with in situ observations and with the TRMM rainfall
climatology, and it provides a plausible representation of how the frequency of deep cumulus
convection varies over the course of the day in the vicinity of coastlines and orography. Indeed,
most of the features of the seasonal and diurnal cycles derived from WWLLN and the
mechanisms that give rise to them have been known, or at least hinted at, for decades. What is
new is the unprecedented ability to view the diurnal cycle in lightning from a global perspective
with high spatial resolution. Although we have not illustrated it here, the large sample size of
WWLLN data makes it possible to refine the analysis in order to investigate how the diurnal
cycle in lightning changes with season and in response to day-to-day variations in wind patterns
and vertical profiles of temperature and moisture. Such analyses will be useful for refining our
understanding of the environmental conditions that give rise to intense convection and for
validating numerical models that attempt to simulate the statistics of intense convection in a
realistic setting.

Acknowledgments

The authors thank three anonymous reviewers for their helpful recommendations. This
work was supported by the National Science Foundation under grant ATM 0812802 and by
NOAA under contract NA10OAR4320148 AM62. Lightning location data were provided by
WWLLN (http://wwlln.net), a collaboration among over 50 universities and institutions. The LIS/OTD climatologies were obtained from the NASA’s Global Hydrology and Climate Center (http://thunder.msfc.nasa.gov/). TRMM rainfall data were obtained from NASA’s Goddard Earth Sciences Data and Information Services Center (http://mirador.gsfc.nasa.gov/).

References

Figure 1. Location of WWLLN sensors, color-coded according to the date each was established. Stations established prior to 2008 are shown in dark blue; black stars indicate stations established 2012-present.
Figure 2. Annual-mean frequency of occurrence of lightning from LIS/OTD (a; flashes km\(^{-2}\) yr\(^{-1}\)) and WWLLN (b; strokes km\(^{-2}\) yr\(^{-1}\)). Ratio of LIS/OTD to WWLLN strokes, scaled by the mean of each dataset (c; gray shading indicates either no LIS/OTD lightning flashes or WWLLN lightning frequency < 0.01 strokes km\(^{-2}\) yr\(^{-1}\); see text for details). All fields have been averaged on a 1° x 1° grid. Black contours indicate the 500-m elevation.
Figure 3. TRMM annual-mean (a) and seasonal-mean precipitation (b to e; mm day$^{-1}$; 1° × 1° resolution). Black contours indicate the 500-m elevation.
Figure 4. WWLLN seasonal-mean lightning frequency (strokes km$^{-2}$ yr$^{-1}$; 1° × 1° resolution) during December-February (DJF; a, b) and June-August (JJA; c, d). Black contours indicate the 500-m elevation.
Figure 5. WWLLN lightning frequency (a, c; strokes km$^{-2}$ yr$^{-1}$) and TRMM 3B42 precipitation (b, d; mm day$^{-1}$; both at 0.25° × 0.25° resolution) during DJF (a, b) and JJA (c, d). Black contours indicate the 500-m elevation.
Figure 6. WWLLN lightning frequency (a-c; strokes km$^{-2}$ yr$^{-1}$; hourly, 0.25° × 0.25° resolution) and LIS/OTD lightning frequency (d-f; flashes km$^{-2}$ yr$^{-1}$; two-hourly, 2.5° × 2.5° resolution) for indicated time intervals during all months. Local time given for Singapore. Black contours indicate the 500-m elevation. Elevation (m) in (g).
Figure 7. WWLLN lightning frequency (strokes km\(^{-2}\) yr\(^{-1}\); 0.25° × 0.25° resolution) over the central Andes for indicated time intervals during November-March. Local time given for Lima, Peru. Black contours indicate the 500-m and 4000-m elevation. Elevation (m) in (c).
Figure 8. As in Fig. 7, but for tropical Africa for all months. Local time given for Kampala, Uganda.